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We present an analytic method for calculating spectral densities of empirical covariance matrices for corre-
lated data. In this approach the data is represented as a rectangular random matrix whose columns correspond
to sampled states of the system. The method is applicable to a class of random matrices with radial measures
including those with heavy �power-law� tails in the probability distribution. As an example we apply it to a
multivariate Student distribution.
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I. INTRODUCTION

Random matrix theory provides a useful tool for descrip-
tion of systems with many degrees of freedom. A large spec-
trum of problems in physics �1�, telecommunication, infor-
mation theory �2–5� and quantitative finance �6–13� can be
naturally formulated in terms of random matrices.

In this paper we apply random matrix theory to calculate
the eigenvalue density of the empirical covariance matrix.
Statistical properties of this matrix play an important role in
many empirical applications. More precisely, the problem
which we shall discuss here can be generally formulated in
the following way. Consider a statistical system with N cor-
related random variables. Imagine that we do not know a
priori correlations between the variables and that we try to
learn about them by sampling the system T times. Results of
the sampling can be stored in a rectangular matrix X con-
taining empirical data Xit, where the indices i=1, . . . ,N and
t=1, . . .T run over the set of random variables and measure-
ments, respectively. If the measurements are uncorrelated in
time the two-point correlation function reads

�Xi1t1
Xi2t2

� = Ci1i2
�t1t2

, �1�

where C is called correlation matrix or covariance matrix.
For simplicity assume that �Xit�=0. If one does not know C
one can try to reconstruct it from the data X using the em-
pirical covariance matrix

cij =
1

T
�
t=1

T

XitXjt, �2�

which is a standard estimator of the correlation matrix. One
can think of X as of an N�T random matrix chosen from the
matrix ensemble with some prescribed probability measure
P�X�DX. The empirical covariance matrix:

c =
1

T
XX� �3�

depends thus on X. Here X� stands for the transpose of X.
For the given random matrix X the eigenvalue density of the
empirical matrix c is

��X,�� �
1

N
�
i=1

N

�„� − �i�c�… , �4�

where �i�c�’s denote eigenvalues of c. Averaging over all
random matrices X,

���� � ���X,��� =	 ��X,��P�X�DX , �5�

we can find the eigenvalue density of c which is representa-
tive for the whole ensemble of X. We are interested in how
the eigenvalue spectrum of c is related to that of C �14–16�.
Clearly, as follows from �1�, the quality of the information
encoded in the empirical covariance matrix c depends on the
number of samples or more precisely on the ratio r=N /T.
Only in the limit T→�, that is for r→0, the empirical ma-
trix c perfectly reproduces the real covariance matrix C. Re-
cently a lot of effort has been made to understand the statis-
tical relation between c and C for finite r. This relation plays
an important role in the theory of portfolio selection where
Xit are identified with normalized stocks’ returns and C is the
covariance matrix for interstock correlations. It is a common
practice to reconstruct the covariance matrix from historical
data using the estimator �2�. Since the estimator is calculated
for a finite historical sample it contains a statistical noise.
The question is how to optimally clean the spectrum of the
empirical matrix c from the noise in order to obtain a best
quality estimate of the spectrum of the underlying exact co-
variance matrix C. One can consider a more general prob-
lem, where in addition to the correlations between the de-
grees of freedom �stocks� there are also temporal correlations
between measurements �17�,

�Xi1t1
Xi2t2

� = Ci1i2
At1t2

, �6�

given by an autocorrelation matrix A. If X is a Gaussian
random matrix, or more precisely if the probability measure
P�X�DX is Gaussian, then the problem is analytically solv-
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able in the limit of large matrices �17–20�. One can derive
then an exact relation between the eigenvalue spectrum of
the empirical covariance matrix c and the spectra of the cor-
relation matrices A and C.

In this paper we present an analytic solution for a class of
probability measures P�X�DX for which the marginal distri-
butions of individual degrees of freedom have power-law
tails: p�Xit�
Xit

−1−	 which means that the cumulative distri-
bution function falls like Xit

−	. Such kind of distributions has
been discussed previously �21,22� but, up to our knowledge,
the spectral density of c remained unattainable analytically.
The motivation to study such systems comes from the em-
pirical observation that stocks’ returns on financial markets
undergo non-Gaussian fluctuations with power-law tails. The
observed value of the power-law exponent 	�3 seems to be
universal for a wide class of financial assets �23–25�. Ran-
dom matrix ensembles with heavy tails have been recently
considered for 0
	
2 using the concept of Lévy stable
distributions �26–28�. Here we will present a method which
extrapolates also to the case 	�2, being of particular interest
for financial markets.

We will study here a model which on the one hand pre-
serves the structure of correlations �6� and on the other hand
has power-law tails in the marginal probability distributions
for individual matrix elements. More generally, we will cal-
culate the eigenvalue density of the empirical covariance ma-
trix c �3� for random matrices X which have a probability
distribution of the form

Pf�X�DX = N−1f�Tr X�C−1XA−1�DX , �7�

where DX=�i,t=1
N,T dXit is a volume element. The normaliza-

tion constant N,

N = �d/2�Det C�T/2�Det A�N/2 �8�

and the parameter d=NT have been introduced for conve-
nience. The function f is an arbitrary non-negative function
such that P�X� is normalized: P�X�DX=1.

In particular we will consider an ensemble of random ma-
trices with the probability measure given by a multivariate
Student distribution,

P	�X�DX =

�	 + d

2
�

N�	

2
��d

�1 +
1

�2Tr X�C−1XA−1�−�	+d�/2

DX .

�9�

The two-point correlation function can be easily calculated
for this measure,

�Xi1t1
Xi2t2

� =
�2

	 − 2
Ci1i2

At1t2
. �10�

We see that for �2=	−2 and for 	�2 the last equation takes
the form �6�. With this choice of �2 the two-point function
becomes independent on 	, however the formula for the
probability measure �9� breaks down at 	=2 and cannot be
extrapolated to the range 0
	�2. An alternative and actu-
ally a more conventional choice is �2�	 which extrapolates

easily to this range. In this case one must remember that for
	�2 the exact covariance matrix is given by 	

	−2C, where C
is the matrix in Eq. �9� with �2=	. We will stick to this
choice in the remaining part of the paper.

The marginal probability distribution for a matrix element
Xit can be obtained by integrating out all other degrees of
freedom from the probability measure P�X�DX. One can see
that for the Student probability measure �9� the marginal dis-
tributions of individual elements have by construction
power-law tails. For example, if C is diagonal C
=Diag�C1

2 , . . . ,CN
2 � and A=1T then the marginal probability

distributions can be found exactly for each element of the
matrix X,

pi�Xit� =

�	 + 1

2
�

�	

2
��	�Ci

�1 +
Xit

2

	Ci
2�−�	+1�/2

. �11�

The distributions pi fall like 
Xit
−1−	 for large Xit with ampli-

tudes which depend on the index i and are independent of t.
If one thinks of a stock market, this means that stocks’ re-
turns have the same tail exponent but different tail ampli-
tudes. The independence of t means that the distributions
pi�Xit� are stationary. More generally, for any C and for A
which is translationally invariant At1t2

=A��t1− t2�� the mar-
ginal distributions of entries Xit can be shown to have power-
law tails with the same exponent 	 for all Xit and tail coef-
ficients which depend on i and are independent of t, exactly
expected from stocks’ returns on a financial market.

The main purpose of this paper is to calculate the spectral
density of the empirical covariance matrix c for the Student
distribution �9�. The method is similar to the one presented in
Refs. �29–33� for a square Hermitian matrix. It consists in an
observation that every quantity averaged over the probability
distribution having the form �7� can be first averaged over
�d−1� “angular” variables and then of a “radial” variable.
This shall be shortly presented in Secs. II and III. In Sec. IV
the main equation for the eigenvalue density of c for the
radial ensemble �7� with an arbitrary radial profile f shall be
given. Section V contains results for the Student distribution
�9� including some special cases.

II. RADIAL MEASURES

The radial measure �7� depends on one scalar function f
= f�x2� of a real positive argument. In this section we shall
develop a formalism to calculate the eigenvalue spectrum
� f��� of the empirical covariance matrix �3� for such radial
ensembles. The calculation can be simplified by noticing that
the dependence of � f��� on the matrices C and A actually
reduces to a dependence on their spectra. This follows from
an observation that for a radial measure �7� the integral �5�
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defining the eigenvalue density is invariant under simulta-
neous transformations,

C → C̃ = OCO�,

A → Ã = Q�AQ ,

X → X̃ = OXQ�, �12�

where O, Q are orthogonal matrices of size N�N and T
�T, respectively. Choosing the orthogonal transformations

O and Q in such a way that C̃ and Ã become diagonal: C̃
=Diag�C1

2 , . . . ,CN
2 �, Ã=Diag�A1

2 , . . . ,AT
2� with all Ci’s and

At’s being positive, we see that � f��� depends on the matrices
C and A indeed only through their eigenvalues. Therefore,
for convenience we shall assume that C and A are diagonal
from the very beginning.

The radial form of the measure allows one to determine
the dependence of the eigenvalue density � f��� on the radial
profile f�x2�. Intuitively, the reason for that stems from the
fact that one can do the integration for the radial ensembles
�7� in two steps: the first step is a sort of angular integration
which is done for fixed x and thus is independent of the
radial profile f�x2�, and the second one is an integration over
x. A short inspection of the formula �7� tells us that fixed x
corresponds to fixed trace: Tr X�C−1XA−1, and thus that we
should first perform the integration over the fixed trace en-
semble. We shall follow this intuition below.

Let us define a matrix x=C−1/2XA−1/2. Since we assumed
that A and C are diagonal, A1/2 and C1/2 are also diagonal
with elements being square roots of those for A and C. The
elements of x are

xit �
Xit

CiAt
. �13�

They can be viewed as components xj, j=1, . . . ,d of a
d-dimensional Euclidean vector, where the index j is con-
structed from i and t. The length of this vector is

x2 � �
j=1

d

xj
2 = �

i=1

N

�
t=1

T

xit
2 = Tr x�x = Tr X�C−1XA−1, �14�

and thus the fixed trace matrices X are mapped onto a
d-dimensional sphere of the given radius x. It is convenient
to parametrize the d-dimensional vector x using spherical
coordinates x=x�, where �2�Tr ���=1. We can also use
these coordinates to represent the matrix X,

X = C1/2xA1/2 = xC1/2�A1/2 = x���� ,

���� � C1/2�A1/2, �15�

where the definition of the matrix ���� is equivalent to
�it�CiAt�it. While � gives a point on a unit sphere in
d-dimensional space, ���� gives a radial projection of this
point on a d-dimensional ellipsoid of fixed trace,

Tr ��C−1�A−1 = 1. �16�

III. ANGULAR INTEGRATION

We are now prepared to do the integration over the angu-
lar variables D�. In the spherical coordinates �15� the radial
measure �7� assumes a very simple form,

Pf�X�DX = �−d/2f�x2�xd−1dxD� . �17�

The normalization factor N−1 from Eq. �7� cancels out. The
spherical coordinates X=x���� allow us to write the for-
mula for � f��� in the form

� f��� = �−d/2	 ��X,��Pf�X�DX

= �−d/2	 D�	
0

�

�„x����,�…f�x2�xd−1dx . �18�

Although the integration over the angular and the radial part
cannot be entirely separated, we can partially decouple x
from � in the first argument of ��x���� ,��. It follows from
�4� that the rescaling X→�X by a constant gives the relation

���X,�� = �−2��X,�−2�� . �19�

This observation can be used to rewrite the equation �18� in
a more convenient form

� f��� = �−d/2	 D�	
0

�

������,
�

x2� f�x2�xd−3dx

=
2

�d/2�	0

�

�*� �

x2� f�x2�xd−3dx , �20�

where �z� is the Euler gamma function and

�*��� �
1

Sd
	 �„����,�…D� . �21�

Here Sd denotes the hypersurface area of d-dimensional
sphere of radius one, Sd=2�d/2 /� d

2
�. As we shall see below

the last expression is an eigenvalue distribution of the em-
pirical covariance matrix for the fixed trace ensemble defined
as an ensemble of matrices X such that Tr X�C−1XA−1=1.
From the structure of the equation �20� it is clear that if �*���
is known then � f��� can be easily calculated for any radial
profile just by doing one-dimensional integral. So the ques-
tion which we face now is how to determine �*��� for arbi-
trary C and A. We will do this by a trick. Instead of calcu-
lating �*��� directly from Eq. �21�, we will express �*��� by
the corresponding eigenvalue density �G��� for a Gaussian
ensemble, whose form is known analytically �17,28�. Let us
follow this strategy in the next section.

IV. FIXED TRACE ENSEMBLE AND GAUSSIAN
ENSEMBLE

The probability measure for the fixed trace ensemble is
defined as
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P*�X�DX =

�d

2
�

N
�„Tr�X�C−1XA−1� − 1…DX . �22�

In the spherical coordinates � the formula reads

P*�X�DX =
2

Sd
��x2 − 1�xd−1dxD� .

One can easily check that the integration �*���
=��X ,��P*�X�DX indeed gives �21�. It is also worth notic-
ing that the normalization condition for P*�X� is fulfilled.
Consider now a Gaussian ensemble,

PG�X�DX � N−1fG�Tr X�C−1XA−1�DX , �23�

where

fG�x2� =
1

2d/2e−�1/2�x2
, �24�

for which the spectrum �G��� is known or more precisely it
can be easily computed numerically in the thermodynamical
limit N ,T→� �17,34,35�. On the other hand, as we learned
in the preceding section, the density of eigenvalues of the
empirical covariance matrix c can be found applying Eq.
�20� to the Gaussian radial profile �24�,

�G��� =
21−d/2

�d

2
�	0

�

�*��

x2�xd−3e−�1/2�x2
dx . �25�

Changing the integration variable to y: x2=dy2 and rescaling
the spectrum �G by d: �= �

d we eventually obtain

d�G�d�� = 	
0

�

�*� �

y2� 1

y2�21−d/2dd/2

�d

2
� yd−1e−�1/2�dy2�dy .

�26�

One can easily check that the formula in the square brackets
tends to the Dirac delta for large matrices because then d
goes to infinity,

lim
d→�

21−d/2dd/2

�d

2
� yd−1e−�1/2�dy2

= ��y − 1� ,

and thus the integrand in Eq. �26� gets localized around the
value y=1. Therefore for large d we can make the following
substitution:

�*��� = d�G�d�� . �27�

Inserting it into Eq. �20� and changing the integration vari-
able to y= d�

x2 we finally obtain a central equation of this
paper,

� f��� =
dd/2

�d/2�
�d/2−1	

0

�

�G�y�f�d�

y
�y−d/2dy . �28�

The meaning of this formula is the following: for any ran-
dom matrix ensemble with a radial measure �7� the eigen-

value density function � f��� is given by a one-dimensional
integral of a combination of the corresponding Gaussian
spectrum �G��� and the radial profile f�x�. The equation
holds in the thermodynamic limit: d=NT→� and r=N /T
=const. Since in this limit we are able to calculate the spec-
trum �G��� for arbitrarily chosen A ,C, the formula �28�
gives us a powerful tool for computing spectra of various
distributions. In the next section we shall apply it to the
multivariate Student ensemble �9�.

V. MULTIVARIATE STUDENT ENSEMBLE

The radial profile for the Student ensemble �9� is

f�x2� � f	�x2� =

�	 + d

2
�

�	

2
�	d/2

�1 +
x2

	
�−�	+d�/2

. �29�

We have chosen here the standard convention �2=	 since we
would like to calculate the spectrum �	��� also for 	�2 �see
the discussion at the end of the first section�. Inserting �29�
into the equation �28�,

�	��� = �d

	
�d/2 �	 + d

2
�

�d

2
��	

2
��d/2−1

�	
0

�

�G�y��1 +
d�

	y
�−�	+d�/2

y−d/2dy ,

and taking the limit d→�,

lim
d→�

�d

	
�d/2�	 + d

2
�

�d

2
� y−d/2��d/2�−1�1 +

d�

	y
�−�	+d�/2

= �	

2
�	/2

e−	y/2�y	/2�−�	+2�/2,

we see that the expression for �	��� simplifies to an expres-
sion which is independent of d,

�	��� =
1

�	

2
��

	

2
�	/2

�−�	/2�−1	
0

�

�G�y�e−	y/2�y	/2dy .

�30�

The formula �30� works for all 	�0. From the last equation
we can infer the behavior of �	��� for large �. The function
�G�y� has a compact support �17,20,34�, therefore for large �
the exponential can be approximated well by 1. The function
�	��� has thus a long tail,
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�	��� � �−�	/2�−1 ·
1

�	

2
��

	

2
�	/2	

0

�

�G�y�y	/2dy , �31�

where the integral does not depend on �. The exponent
−	 /2−1 in the above power law depends on the index 	 of
the original Student distribution. The change from the power
	 to the power 	 /2 comes about because c is a quadratic
combination of X.

The power-law tail in the eigenvalue distribution �31�
does not disappear in the limit of large matrices contrary to
the power-law tails in the eigenvalue distribution for an en-
semble of matrices whose elements are independently dis-
tributed random numbers. For such matrices, for 	�2, the
density ���� falls into the Gaussian universality class and
yields the Wishart spectrum �36�. One should remember that
the multivariate Student distribution �9� discussed here does
not describe independent degrees of freedom even for A
=1T and C=1N, in which case the degrees of freedom are
“uncorrelated” but not independent.

We have learned that the spectrum is unbounded from
above. Let us now examine the lower limit of the spectrum.
Rewriting Eq. �30� in the form

�	��� =
2		/2

�	

2
�	0

�

�G�2x��e−	xx	/2dx , �32�

we see that as long as ��0 the function �	��� is positive
since �G�x� is positive on a finite support. Thus the function
�	��� vanishes only at �=0 and it is positive for any ��0.
Contrary to the classical Wishart distribution for the Gauss-
ian measure, the spectrum �30� spreads over the whole real
positive semiaxis. On the other hand, taking the limit 	
→� of Eq. �32� and using the formula

lim
	→�

2		/2

�	

2
� x	/2e−	x = ��x − 1/2� , �33�

we obtain �	→����=�G��� as expected, because in this limit
the radial profile f	�x2� given by Eq. �29� for the Student
distribution reduces to the Gaussian one �24�.

VI. EXAMPLES

Let us first consider the case without correlations: C=1N
and A=1T. The spectrum of the empirical covariance for the
Gaussian ensemble is given by the Wishart distribution,

�G��� =
1

2�r�
���+ − ���� − �−� ,

where �±= �1±�r�2 �14–16�. The corresponding spectrum
�30� for the Student ensemble is then

�	��� =
1

2�r�	

2
��

	

2
�	/2

�−	/2−1

�	
�−

�+ ���+ − y��y − �−�e−	y/2�y�	/2�−1dy . �34�

The integral over dy can be easily computed numerically.
Results of this computation for different values of 	 are
shown in Fig. 1. For increasing 	 the spectrum �	��� tends to
the Wishart distribution but even for very large 	 it has a tail
which touches �=0 as follows from Eq. �32�. In Fig. 2 we
have plotted �	��� for 	=0.5, 1, and 2 and compared them to
experimental results obtained by the Monte Carlo generation
of random matrices drawn from the corresponding ensemble
with the probability measure �9� for which eigenvalue den-
sities were computed by numerical diagonalization. The
agreement is perfect. Actually it is even better than for the
Gaussian case for the same size N.

FIG. 1. Spectra of the covariance matrix c for the Student dis-
tribution �9� with C=1N and A=1T, r=N /T=0.1, for 	=1/2, 2, 5,
20, and 100 �thin lines from solid to dotted�, calculated using the
formula �34� and compared to the uncorrelated Wishart �thick line�.
One sees that for 	→� the spectra tend to the Wishart distribution.

FIG. 2. Spectra of the empirical covariance matrix c calculated
from Eq. �34� with r=1/3, compared to experimental data �stair
lines� obtained by the Monte Carlo generation of finite matrices N
=50, T=150. Inset, the left-hand part of the same distributions,
points represent experimental data.
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As a second example we consider the case when C has
two distinct eigenvalues �1 and �2 with degeneracies: �1
− p�N for �1 and pN for �2, where 0� p�1. Such a covari-
ance matrix can be used to model the simplest effect of sec-
torization on a stock exchange, For example, if all diagonal
elements of the matrix C are equal 1 and all off-diagonal are
equal �0 �0
�0
1� the model can be used to mimic a col-
lective behavior on the market �9,10�. In this case �1=1
−�0 has a degeneracy N−1 and �2=1+ �N−1��0 is nonde-
generated, hence p=1/N. The eigenvector corresponding to
the larger eigenvalue �2 can be thought of as describing the
correlations of all stocks. For our purposes it is however
more convenient to set �1=1 and �2�� and p being an
arbitrary number between zero and one. The corresponding
Wishart spectrum �G��� can be obtained by solving equa-
tions given by a conformal map �20�. The resulting spectrum
has the form

�G��� =
1

�
�Im

M�Z����
�

� , �35�

where

M�Z� =
1 − p

Z − 1
+

p�

Z − �
, �36�

Z��� = −
a

3
+

�1 − i�3��3b − a2�
3 � 22/3E

−
�1 + i�3�E

6 � 21/3 , �37�

E = �3�3�27c2 − 18abc + 4a3c + 4b3 − a2b2

− 27c + 9ab − 2a3�1/3, �38�

where a=r−1− pr−��1− pr�−�, b=���+1�−��1−r� and
c=−��. Inserting the above formula into Eq. �30� we obtain
an integral, which can be computed numerically for arbitrary
r ,� , p. In Fig. 3 we show examples of this computation for
different values of the index 	. In the same figure we com-
pare the analytic results with those obtained by the Monte
Carlo generation and numerical diagonalization of random
matrices for N=40, T=400. As before, the agreement be-
tween the analytic and Monte Carlo results is perfect. We see
that the effect on the spectrum of introducing heavy tails
increases with decreasing 	. When 	 is decreasing from in-
finity to zero the two disjoint islands of the distribution de-
velop a bridge to eventually end up as a distribution having
only one connected component.

VII. SUMMARY

In the paper we have developed a method for computing
spectral densities of empirical covariance matrices for a wide
class of “quasi-Wishart” ensembles with radial probability
measures. In particular we have applied this method to de-
termine the spectral density of the empirical covariance ma-
trix for heavy tailed data described by a Student multivariate
distribution. We have shown that the spectrum ���� decays
like �−	/2−1 where 	 is the index of Student distribution. The
case of 	=3 is of particular importance since it can be used
in modeling stock markets. The eigenvalue density spreads
over the whole positive semiaxis in contrast to the Wishart
spectrum which has a finite support.

We have also derived a general formula for the eigenvalue
spectrum of the empirical covariance matrix for radial en-
sembles. The spectrum is given by a one-dimensional inte-
gral, which can be easily computed numerically. The method
works also in the case of correlated assets.
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